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Abstract. We discuss the behaviour of two-dimensional directed vesicles in the presence of 
an aaractive surface. The variation of the binding potential with osmotic pressure difference is 
cdculatd and shown to exhibit surprisingly complex behaviour. 

1. Introduction 

Our aim in this paper is to study the statistical properties of vesicles attracted to an adsorbing 
substrate. Vesicles are closed surfaces, isomorphic to the sphere [l]. They are relevant as a 
model system for the studies of the configurational properties of biological cell membranes, 
such as the red blood cells [2]. Moreover, artificial vesicles have potential applications in 
drug delivery. 

Given the complexity of the behaviour of vesicles in thee dimensions much of the 
current research is focused on two-dimensional models of closed rings. One of the important 
parameters is the osmotic pressure difference, Ap, between the inside and outside of the 
ring. If this is negative the vesicles are deflated and are thought to have the same critical 
behaviour as branched polymers. For Ap = 0 the models behave as a self-avoiding ring. 
For a positive difference the vesicles are inllated with maximal area [3,4]. 

Recently Foster and Sen0 [5] presented results obtained from series analysis for the 
effect of the pressure difference on the adsorption transition of two-dimensional vesicles. 
They encountered numerical difficulties that prevented them from obtaining definitive results 
for the shape of the adsorption phase boundary. The problems were particularly severe for 
Ap +. 0- where it was not possible to tell whether or not the boundary was continuous. 

In an attempt to clarify this behaviour we study here the adsorption transition of directed 
vesicles. Results are obtained by extrapolating exact answers for finite strips of widths s 
which follow from diagonalizing the transfer matrix. Because of the directed nature of the 
vesicle, strip widths of s < 65 and, for a restricted version of the model, s < 165 are 
accessible. This enables us to obtain very precise results for the position of the binding 
transition and to investigate its behaviour as the pressure difference tends to zero. 

The vesicles we consider are directed m that they are bounded by two solid-on-solid 
walks, that is walks without overhangs. We also impose the condition that the two walks 
enclosing the membrane must never touch. The shape obtained by following these rules is 
known as a row-convex polygon; an example is shown in figure 1. 

The vesicle is placed on a strip of infinite length and width s. Rows of the lattice 
are labelled by integers, with rows 1 and s being attractive walls. The position of the 
walks in column i is labelled by n;, mi with ni > mi. We shall consider two different 
models; unrestricted where n;+l -ni  and mi+l -m; can take any value and restricted where 
ni+l - ni = f l ,  0; mi+] -mi = f l ,  0. 
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Figure 1. A directed vesicle on a strip of wid6 S. 

Assigning a fugacity a to each plaquette, 0 to each monomer, and K to each contact 
with the walls the transfer matrix G,j linking two subsequent columns i. j is readily written 
as 

zj = W'oIpK9 (1.1) 

where 

if the matrix element corresponds to an allowed configuration. 

vesicles of all lengths on the lattice is [6] 
Denote by bo the maximum eigenvalue of T. If bo < 1 the generating function for 

T 
1 - T  

z = ( V I - [ U )  (1.5) 

where Iu) ,  [U) are vectors depending on the initial and final configuration of the vesicles. 
As usual the fugacity w controls the average length of the vesicle 

a i n z  
aw 

(L(K, 0)) =U-- 

and the critical fugacity w * ( K ,  a) is obtained by imposing ho(w*, K ,  a) = 1. 
For each value of 0 < LY < 1 a binding transition is expected to occur for some 

K = K&). For K < K&) the vesicle is not bound to the surface and w*(K, a) is equal to a 
value w&) which is independent of K .  For K > K&) the largest eigenvalue corresponds 
to a bound eigeustate and o * ( K , ~ )  decreases with increasing K [7]. 

Our aim here is to understand how the position of the binding transition (oc(a), K&)) 

depends on a. We do this by using a numerical approach based on a crossingpoint method 
fist introduced by Veal era1 [SI. This is described and justified in section 2. In particular 
we compare numerical and exact results for a soluble model. Results for restricted and 
unrestricted vesicles are presented and discussed in section 3. 
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2. The numerical approach 

Very precise results for the dependence of the position of the binding transition on the area 
fugacity (w&), K&)) have been obtained using a crossing-point method first introduced 
by Veal et al [SI. Indicating by o,*(01. K) the critical value of o for a vesicle on a strip of 
width s, it becomes apparent that if o,*(a, x )  is plotted as a function of K for fixed 01 c 1, a 
crossing point occurs between curves for different s. Examples are shown in figure 2. Using 
(&(a), &(a)) to denote the crossing point of @,'(a, K) and of+,(01, K) we shall assume that 

(2.1) 

Our aim in this section is to summarize the evidence for this assumption and to discuss its 
physical meaning. 

lim (&(a), r?S(d) = (@C@)>  K&)). 
S+m 

a =0.25 
1.2 

1.1 

3" 
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Figure 2. Variation of critical bond fugacity U: with binding potential x for different values of 
area fugacity (1. Results are presented for strip widths s = 3 - 15. Note that the crossing point 
of the curves disappears for a = 1. 
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Equation (2.1) has been found to hold true for several exactly soluble models. These 
are directed polymers with and without attractive monomer-monomer interactions near an 
attractive wall [SI and the adsorption transition of strongly-embedded restricted walks [9]. 
The latter model corresponds to the a = 0 limit of the restricted vesicles considered here. 

Brak and Guttmann [IO] have solved the unrestricted model of convex polygons 
exactly. This corresponds to K = 1 and s = w. However w * ( K , ~ )  can be proved to 
be independent of K for K < K&) [ l l ,  121 and hence their calculation provides a check on 
the numerical results for the binding fugacity presented here. They give a numerical fit for 
d ( 1 ,  a) = wC(a) which is indistinguishable from OUT results to within the accuracy of the 
fit itself [lO]t. 

A further check on the numerical approximations to both K~ and U, throughout the 
range of a can be made by considering a vesicle built using only the column configurations 
appearing in figure 3. This model can be solved exactly following the approach outlined 
in previous work [9]. The exact results and those obtained from the crossing-point method 
are compared in table 1. The numerical values (c, &) follow from extrapolating finite-size 
data for strip widths up to s = 15. Despite the small strip widths the agreement is excellent. 

k;p [h ........ 0 a 
.... 

p q  ....... Q ........ 

Figure 3. Allowed configurations in two neighbouring columns of the latice for an exaaly 
soluble model of directed vesicles.- This model was used lo check the numerical procedure 
described in the text. 

It is of importance to the understanding of the crossing point to note that it only occurs 
when both walls of the strip are attractive. Moreover, even if this is the case, for a = 1 
no crossing point is found. As 01 approaches unity it is necessary to take into account 
increasingly large strip widths s before the crossing point occurs. A typical behaviour of 
(Zs, &) is given in figure 4 where the behaviour of the average area per column a, has also 

t In lhe la9 equation of [IO] yz and L should be interchanged. 
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Table 1. Comparison between the exacl and numerical solutioac of a soluble vesicle model (see 
figure 3). Tliehnerical values (i ,  6) follow from extrapolating the position of lhe crossing 
point (E,, G4) for stdps of width s < IS lo infinite widlh. 

DL - 
0. I 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

KSexact) 

1.35298430 
1.354 458 4 1 
1.35405758 
1.35157622 
1.34684283 
1.339 746 26 
1.330262 46 
1.31847553 
1.304 58746 

K %(enact) 

1.35298539 2.01912648 
1.35446212 1.40703286 
1.354061 48 1.131 38044 
1.35157798 0.96416746 
1.34685095 0,847902 18 
1,33974902 0.760351 05 
1.330261 70 0.690 86062 
1.318477 35 0.633 60699 
1.304595 13 0585 10835 

6 

2.019 12633 
1.407 032340 
1.13137991 
0.96416697 
0.847901 86 
0.760350 91 
0,59086021 
0,63360670 
0.585 10776 

been plotted. Note that the position of (i,, 6,) only reaches its asymptotic behaviour for 
s t a,. The system is then behaving as a vesicle attracted to a single surface rather than 
two walks attracted to the two surfaces of the snip. 

The crossing point occm because, for fixed LY < 1, o,*(K, a) is a decreasing function of 
s for K < K~ and an increasing function of s for K > K ~ .  It can be shown formally that this 
is the case for directed polymers [ll]. Here we give a physical argument that indicates that 
this also occurs in the vesicle case. In the extended regime the vesicle is restricted and loses 
entropy on a strip of finite width. Therefore it needs to increase its step fugacity w to attain 
a given length and w: increases with decreasing s. In the bound regime the symmetry of 
the problem dictates that the vesicle tunnels between the two sides of the strip. The second 
surface thus enables it to increase its entropy and, for a given K, this effect dominates and 
w,* decreases with decreasing s. 

3. The adsorption phase boundaries 

Results for the adsorption phase boundaries of the restricted and unrestricted models are 
shown in figures 5 and 7 respectively. The limiting value &(3) was obtained using a 
standard Pad6 analysis [I31 for the convergence of the finite-size data (is. &). Only values 
for which s > a, (see figure 4) for which the finite-size behaviour appeared to have reached 
an asymptotic regime were included in the analysis. The value of s for which this occurred 
increased with increasing s and, indeed, the crossing point is not expected to occur for 
a=1.  

For the restricted model it was possible to consider strip widths s 4 165 and to obtain 
reliable numerical data for (i ,  (3) for a 5 0.9999. These are presented in figures 5 and 6 .  
For 01 = 0 the numerical results reproducehe analytic solution K~ = 1.3095 exactly. For 
a --f 1 they are consistent with a trend towards the exact value (&, wc) = (i, 4) [7]. 

As 01 --f 0 (3 diverges as CY-'/'. The value then decreases smoothly with increasing 
a and there is some numerical evidence for a power law dependence of (3 on (1 - 01) as 
(Y + 1. This is as expected 14,141. 

i decreases with increasing 01 < 0.8; then increases sharply to its limiting value at 
LY = 1. Note, however that the variation in 

These results should be compared to those for the unrestricted model shown in figures I 
and 8. In this case the maximum strip width that we have been able to attain is s = 65 and 
therefore reliable data for the crossing point could be obtained only for a 5 0.998. 

over the range 0 g 01 g 1 is only - 3%. 
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(5 behaves in a similar way to the restricted model approaching the exact value 
o, = a - 1 I151 as LY + 1-. E ,  however, initially increases with increasing 01, then 
decreases, until for 01 7 0.99 there is an increase which is very sharp but consistent with a 
continuous approach to the exact limiting value K~ = 1 + I/a. It should be borne in mind 
that the variation of i with LY is only - 2%. 

In both models 17 changes little in magnitude as the area fugacity is varied, but shows 
considerable structure. We believe this to be the result of subtle competition between the 
change in shape of the vesicle from flaccid to branched polymer-like as LY decreases and 
the interaction of the binding surface with the second vesicle surface further from the wall. 
Strong effects may be expected when a 5 1 where the area of the vesicle grows quickly 
with LY. 

In summary we have presented phase diagrams for the dependence of the binding 
fugacity on area fugacity for directed vesicles. The results are subtle and large ship widths 
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Figure 5. Dependence of the binding potential k on the 
area fugacity a for the restricted directed model. The 
exact value for a = I is indicated by a star. 

Figure 6. Dependence of the bond fugacity af the 
binding hansition 6 on the area fugacity [L for the, 
restricted directed model. 
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Figure 7. (a)  Dependence of the binding potential i on 
the area fugacity a For the unrestricted directed model. 
The exact value far a = 1 is indicated by a star. (b) 
A close-up of the phase boundary shown in figure 7(a) 
f o r a c l .  

z c  \ -1 

0 0.2 0.4 a 0.6 0.8 1 

Figure 8. Dependence of the bond fugacity at the 
binding hansition @ on the area fugacity a for the 
unrestricted directed model. 

are needed to obtain meaningful curves. Numerical work for the binding of non-directed 
vesicles, even in two-dimensions, will be difficult. 
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